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An exact solution of the discrete Smoluchowski equation and 
its correspondence to the solution of the continuous equation 

Richard P Treat 
Physics Department, West Virginia University, MorgantoNn, WV 26506, USA 

Received 18 September 1989 

Abstract. An exact, general solution of the discrete Smoluchowski equation for the kernel 
K k ,  I = A +  B ( k  + j )  is derived. Rules are given for taking the continuous limit of the discrete 
solution. The limit obtained is an exact, general solution of the continuous Smoluchowski 
equation. Examples of limits are given for specific initial distributions for the case of 
constant kernel. 

1. Introduction 

The Smoluchowski equation provides a theory for the time evolution of a size distribu- 
tion of particles coagulating by two-body collisions [ 1,2]. The equation in its original 
and  simplest form expresses the conservation of the mass of a system of colliding 
particles. It was applied first to small, suspended particles which collide and coagulate 
by virtue of their Brownian motion and has subsequently been applied to many other 
physical systems where two-body collisions are the dominant physical process. The 
discrete form of the equation was derived first by Smoluchowski [ l ]  and  was given 
later in the continuous form by Muller [3]. The discrete equation gives the better 
theoretical description of a physical system since particles have discrete masses. 
However, the continuous equation has provided the setting for constructing Laplace 
transform solutions and  Friedlander’s self-preserving solutions and  studying the tem- 
poral asymptotic behaviour of solutions [4-71. A general review of the considerable 
amount of mathematical analysis devoted to both forms of the equation has been given 
by Drake [4]. 

In this work we consider the discrete equation with the collision matrix 

K k , ,  = A +  B ( k + j )  ( 1 )  
where A and  B are constants. This particular collision matrix, here called the linear 
kernel, has been studied because of its mathematical simplicity and its application to 
physical systems. The linear kernel represents a certain kind of polymer formation 
[8], and also approximates a combination of Brownian and  shear-flow coagulation 
[4]. An exact solution for a monodisperse initial distribution has been constructed by 
Lu [9], but a solution has not been given for general polydisperse initial distributions. 
In this work we construct the general solution. We then identify some special cases 
and  consider an alternative form of the constant kernel equation. 

The exact solution of the continuous equation for the linear kernel for general 
polydisperse initial distributions was given some time ago by Drake and  Wright [lo].  

0305-4470/90/ 133003 + 14303.50 Q 1990 IOP Publishing Ltd 3003 
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Although exact solutions for both the discrete and continuous equations are known 
for the linear kernel and quadratic kernels as well, the correspondence between discrete 
and continuous solutions has not been studied. We consider the correspondence here. 
The continuous limit is taken to be the limit of the discrete solution as the smallest 
particle size in the initial discrete distribution goes to zero. We show that the continuous 
limit of the discrete solution is identical to the exact solution of the continuous equation 
given by Drake and Wright [lo]. For the case of constant kernel, we consider two 
simple examples of initial discrete distributions. We generate two one-parameter 
families of discrete solutions which have limits that are well known solutions of the 
continuous equation. 

In the appendix we confirm directly, by taking moments of the general solution 
for the linear kernel, that the second moment of the distribution is finite for 0 -=t<a).  - 
2. Transformation of the Smoluchowski equation 

The discrete equation is given by 

In (2) t is time and nk is the spatial density of particles with volume u k ,  where the 
discrete particle volumes are assumed to be integer multiples of some smallest volume 
u I .  The first term on the right-hand side of (2) gives the rate of increase of the 
concentration of particles with volume u k  due to collisions between particles with 
volumes u k - ,  and U,. The second term gives the decrease in concentration due to 
collisions between particles with volume u k  and all other particles. 

The first step in constructing the solution is to transform the Smoluchowski equation 
to  a simpler form. To make the transformation we need to consider the time dependence 
of the zeroth, first and second moments of the distribution. If the first three initial 
moments exist, we can take moments of the Smoluchowski equation and obtain the 
equations 

d N / d t = - $ ( A N 2 + 2 B M l N )  ( 3 0 )  

dM,/d t  = 0 (3b)  

dM,/dt = AM:+2BMlM2 (3c)  
where the moments are given by 

;c X X 

N = C  n k  MI= E k n k  M2= 2 k 2 n k .  
k = l  A = l  k = l  

N is the total particle number and ulMl = V is the volume of the distribution. The 
integrals of (3)  are 

( 4 a )  N = N02p1B[exp(-plBN0t)][A+2~,B - A e ~ p ( - p ~ B N ~ t ) ] - ~  

No is the initial value of the total particle number, and pl and p2 are the reduced first 
and second initial moments defined by 

P I  = Mi/No=(u)/ui P2 = MAO)/ No 
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where ( v ) =  V/No is the average particle volume of the initial distribution. We see 
that M 2  is finite for 0 S t < cc, and MI is constant and N 3 0 for 0 S t S 00. 

For a monodisperse initial distribution p1 has the value unity and for polydisperse 
distributions pI is greater than unity. I t  is one of the measures of the dispersity of the 
initial distribution. For example, for an initial bimodal distribution with concentrations 
n,(O) = N o / 2 ,  n,(O) = N o / 2 ,  we have 

Proceeding with the solution, we seek a transformation that will transform away 
the second term on the right-hand side of (2)  without spoiling the convolution form 
of the first term. To this end we write the distribution in the form 

nk = NOgk exp(-fi) 

where g, and f k  are functions of time and fk is defined by 

The integral is 

fk = -ln[(dN/dt)/(dN(O)/dt)]+ k 4  

where 

dN(O)/dt = - i N ; ( A + 2 B p , )  

4 = -In[( N / N o + 2 B p l / A ) / ( 1  + 2 B p l / A ) ] 2 B ’ A .  

Substitution of ( 5 )  into the Smoluchowski equation yields 

( 5 )  

where, because of the linear dependence of fk  on k, the convolution form of the sum 
has not been spoiled. Finally we introduce the scaled time variable 

r = l - N l N o  ( 9 )  

and obtain the reduced equation 

where the dimensionless collision constants are defined by 

A* = A / ( A  + 2 p I  E )  E * =  B / ( A + 2 p 1 B ) .  ( 1 1 )  

We denote the initial values of gk by ck, which are arbitrary except for the 
constraining conditions 

and p1 is assumed to be finite. The constraints on the zeroth and first moments ensure 
that the distributions have the initial number No and the first moment MI.  The reduced 
equation (10) has been derived previously by Bak and Lu [ 1 1 1 ,  and Lu [9] and, in a 
different context, by Kobraei and Duncan [ 1 2 ] .  
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From ( 5 ) ,  (6)  and (8) and  the scaled time variable r = 1 - N /  No,  we obtain the 

(13) 

where gk is a solution of (10). We note that the distribution (13) depends only on the 
total number N (or r )  and  contains no explicit dependence on the real time t .  

solution in the form 

n k  = No( 1 - T ) (  1 - A*r)"""" 4 ,  gh 

3. Construction of the solution 

We construct solutions of (10) by the generating function method, where the generating 
function is defined by the formal power series 

X 

G(T,s)= 1 g , ( T ) S ' .  
k - I  

Differentiation of G with respect to r and use of (10) yields 

d G  d 
d r  d s  
- = ( A* + B* -) G'. 

Repeated differentiation of (15) yields 

%= fi ( A * ( j +  I)+2B*sd)  ( n +  l ) - IG"+'  
d r "  , = I  d s  

Evaluating the derivatives of the generating function at r = 0 gives 

d G " ( 0 )  * ~- - 1 n [ A * ( j t  l )+2B*k](n+l)~ 'c :" '"sk 
d r "  I - 1  , = l  

where 

is the notation used by Henrici [ 131 to denote the coefficients in the formal power series 

G"-'(O, S ) = ( C ~ S + C ~ S ~ + C ~ S ~ + .  . . ) ' + I .  

With (16) the generating function may be expressed as 

where we used c y * ' ' =  0 for n > k - 1. Comparison with (14) shows that 
k - 1  1 

- 1  
A*(2 + 2Bk/A),c:"*"~" 

gk = z,, (n+l)! 
where 

( a ) ,  = a ( a +  l ) ( a + Z ) .  . . ( a + n  - 1) = I ' ( a + n ) / T ( a )  (20) 
is the Pochhammer symbol, I' is the gamma function and  we use the convention ( = 1. 

Substituting (19) into (13), we obtain 

i l r ? B h  A I  'il 1 A*" (2 + 2 Bk/A),,c:"" I T " ,  nk = No( 1 - r ) (  1 - A*r)  
" S O  ( n  + l ) !  



An exact solution of the discrete Smoluchowski equation 3007 

The scaled time is given in terms of the real time by 

T =  [ l  - e x p ( - p , B N , , t ) ] [ l  -A*  e ~ p ( - p ~ B N ~ t ) l - ~ .  ( 2 2 )  

The polynomial distribution given by (21) is an exact general solution of the 
Smoluchowski equation. After we consider some special cases of (21) we will compare 
the continuous limit of the solution (21) with the exact, general solution of the 
continuous equation given by Drake and Wright [ 101. 

4. Special cases 

There are a number of special solutions which are easily derived from the general 
solution. For the sake of completeness we show these solutions, show a calculation 
of the first moment of the solution for the sum kernel and give an alternative form of 
the constant kernel equation. 

4.1. Linear kernel, Flory-Stockmayer polymerisation theory, polydisperse 
initial distribution 

In the Flory-Stockmayer theory [14], if there are f functional sites of one kind per 
unit, then, according to Ziff [ 8 ] ,  we have A=2K,  and B = ( f - 1 ) K ,  where K is a 
constant and f= 1 , 2 , .  . . . Substitution and simplification in (21) yields 

nk=N,(1-7){1-T7/[1+pl(f - 1 ) ] } [ 1 7 " - 1 ) k 1  
k - 1  

x {[ 1 + (f- 1)pI]"[ 1 + (f - 1 )  k ]  ! ( n  + 1 )  ! } - I  
n =o 

x [ n  + 1 +(  f - l ) k ] ! c ( k n + ' ' ~ ~  (23) 
where the Pochhammer symbol has been expressed in terms of factorials. 

4.2. Linear kernel, monodisperse initial distribution 

For a monodisperse distribution, we see from (12) that p l  = 1 ,  and from (17 )  we obtain 
c(kn+l' = 8 k , n + l .  Substitution into (21) yields 

nk = N ~ (  1 - T ) (  1 - A * T ) " + ~ ~ ~ / ~ '  ( 1 /  k ! ) A * k - 1 ( 2 +  2 B k / A ) k - 1 ~ k - 1  (24 )  
where 7 is given by (22) with p l  = 1 and A* = A / ( A + 2 B ) .  This solution was given 
first by Lu [9]. 

4.3. Sum kernel, polydisperse initial distribution 

Taking the limit A+O in (21), we obtain the general solution for the kernel K k , j =  
B( k + j ) :  

k - 1  I 

where the scaled time is given by 

T =  1 -exp(-plBNot).  

The solution (25)  has been given first in a different form by Lu [ 9 ] .  
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4.4. Sum kernel, monodisperse initial distribution 

Taking the limit A + 0 in (24) yields 

nk = N,(I - 7 )  exp(-kr)(1/k!)kk- 'Tk- '  

which is the solution first given by Ziff et a1 [15]. 

4.5. Sum kernel, calculation of thejirst moment 

We can write the solution in another form by making use of the generating function. 
Let C ( s )  denote the initial value of the generating function. We have 

X 

C(s)= CkSk 
k = l  

oi 

C " ( s ) =  c C P ' S k  
k = l  

where the contour in the complex s-plane encloses the singularity at the origin, but 
does not include singularities of C " ( s ) .  Substitution into ( 2 5 )  and extending the 
summation to infinity yields 

" 1 1  
nk = No(l - 7) exp(-kT/pl)  c -- 5 C"+l (s)s-k- i  ds(kT/pi)".  

n = O  ( n  + l)!  2 n i  

Carrying out the sum we obtain 

nk = No(l - 7 ) ( p l / k 7 )  exp( -k r /p l )  [ e x p ( k C ( s ) ~ / p , ) -  lls-"' ds 
l i p  

which is close to the form of the Laplace transformation solution of the continuous 
equation given in [4]. 

The above form of the solution is convenient for calculating moments. We calculate 
the first moment. From (31) we obtain 

If 

F ( s ) = s - '  e x p [ ( l - C ( s ) ) r / p l ] < l  

then the sum over k is a convergent geometric series. Taking the derivative of F ( s )  
shows that its minimum value occurs at s = 1/r. Since F(1)  = 1, if we take the contour 
s = r, where 1 < r < T-', T < 1, then F ( s )  < 1. Further, if all the moments of the initial 
distribution are finite this contour will not contain singularities of C". Making this 
assumption, we sum over k and obtain 

M ,  = No(1- T)(ILI/T)  
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The sum of the residues of the integrand is T/( 1 - T). Thus M I  = Nopl, which confirms 
that the first moment is constant for 0 S T 6 1. In the calculation it has been assumed 
that all initial moments exist, whereas in the calculation of the moments from the three 
moment equations it was only necessary to assume that the first three initial moments 
exist. Shirvani and Stock [16] have proved a strong theorem which asserts that the 
particle volume is constant even if the second moment is initially infinite. 

A direct calculation of the second moment using the general solution for the sum 
kernel with the hypothesis that all moments exist is given in the appendix. The result 
is 

M , = N o p , / ( l - ~ ) ~  

which is the same result obtained from the three moment equations with A = 0. 
As another check one may substitute the general solution for the sum kernel into 

the definition of the zeroth moment, carry out a residue calculation and obtain the 
desired identity, N = No( 1 - 7) .  

4.6. Constant kernel, a linear equation for the reduced distribution 

For B = 0 in (19) we obtain the solution for the constant kernel which is 

With (32), (13) becomes 
k - l  

n k  = No( 1 - T)? 1 C(kn+ l )Tn .  
n = O  

(33) 

For a monodisperse initial distribution we have c y t 1 )  = and obtain the well 

(34) 

We now derive an alternative form for the constant-kernel Smoluchowski equation. 

known solution 

nk = No( 1 - T ) 2 T k - '  

first given by Smoluchowski [l]. 

Writing out the first few terms of the sum in (32) gives 

which may be written in the form 

We thus have 

Equation (35) shows that gk satisfies a system of linear, inhomogeneous, algebraic 
equations. After specifying initial values, the solutions of (35) are the same as those 
of the nonlinear reduced equation (10) with B = 0. The linear equation may thus be 
regarded as an  alternative form of the reduced constant-kernel Smoluchowski equation. 
This form of the equation was first pointed out by Loos [17]. Equation (35) may be 
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easily solved recursively or  by standard matrix methods. Because of the convolution 
form of the sum, the matrix of coefficients is lower triangular. Further, the matrix of 
coefficients in (35) is non-singular, so existence and  uniqueness are assured. Unfortu- 
nately, gk satisfies the linear system of equations only for the special case of constant 
kernel. 

5. The correspondence between solutions of the discrete and continuous 
Smoluchowski equations 

The continuous equation is given by 

In (36), t is the real time, U and L; denote the particle-cluster volumes, and  n(u, t )  is 
the spatial density of particles per unit particle volume. K (  U, t.) is a symmetric collision 
frequency function which is determined by the physical nature of the collision process. 
Drake and  Wright [ lo] have derived a general solution of (36) for the continuous 
version of the linear kernel. We give this solution below in a form that is convenient 
for comparison with the discrete solution. The continuous kernel is given by 

(37) 
where a and  b are constants. The solution of (36), obtained by Laplace transformation, 
is 

K ( U, U )  = a + b( U, t' 

n ( V ,  7 ) = ( N i / V ) ( 1  - T ) ( 1 - U * T ) ' 1 + 2 h L  

1 

x [ l / ( n + l ) ! ] a * " ( 2 + 2 h t . / ~ ) , , L ~ ' [ C " " ( s ) ] ~ "  
, I  = 0 

where 

a * = a / ( a + 2 ( ~ ) b ) .  

As in the discrete theory, V is the total volume of the distribution, ( U )  = V / N o  is the 
initial average particle volume, T = 1 - N / N , ,  is the scaled time variable, and (. . .), is 
the Pochhammer symbol with (. . .)" = 1. We use the same symbol we used for the 
generating function, but now C(s)  is the Laplace transform of a dimensionless, 
normalised, initial distribution c (x) ,  where x = Nov/ V is a dimensionless particle 
volume. L - ' [ C ( s ) ]  is the inverse Laplace transform of C(s) .  

Another form of the solution is obtained by carrying out the inverse Laplace 
transformation in (38). With the aid of the convolution theorem we have 

L - ~ [ C " ' l ( s ) ] = [ c ( . ~ ) ] ' " - "  

where we use the notation 

for the convolution integrals. Thus, the general solution may be expressed as 

n ( v ,  T )  = ( N ; /  V ) ( I  - T ) ( I  - - U * T ) ' ~ + ' " ~  O '  

X 

x [ a * " / ( n  + ~)!](~+~~U/U),,[C(X)]'"'"T". 
n =o (391 
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One expects that the continuous limit of the solution of the discrete equation will 
be equal to the solution of the continuous Smoluchowski equation, and  this is indeed 
the case. We now give the rules which show the formal correspondence between the 
discrete and  continuous solutions. 

Let U ,  denote the smallest particle volume in the initial distribution, where it is 
assumed that all other particle volumes are integer multiples of this smallest volume. 
A continuous distribution is obtained by taking the limit U! ' 0 ,  k +  00 with ku, = 
constant. The correspondences to the continuous initial and the continuous time- 
dependent distributions are given by 

(40) c ( x )  = lini V c k / (  clN,,)  
I I - o  

where the initial distribution is normalised according to 

lo' c ( x )  d x  2 1 x c ( x ) d x = I .  

The correspondence between the convolution sums and the convolution integrals is 
given by 

(42) 

Finally, the collision kernel is invariant in the continuous limit if A = a and Bk = bu. 
The latter condition implies that 

lim [ V :  \ c ,  N,,)]c:"' = [ c i x  )I"' .  
I 1 - 1 )  

lim B / u ,  = b. 
I , - I )  

(43) 

Making the substitutions (40)-(43) into the discrete solution (21 j, and taking k = cc 
in the upper limit of the sum over powers of 7, one obtains the continuous distribution 
given by (39). The scaled time  for the continuous distribution is obtained from 122), 
and is given by 

- -  I -- 1 - i ,VI, = [ 1  -expi- Vbr)]/[l - a *  exp(- Vbr)]. 

6. Continuous limits of solutions of the constant-kernel equation 

We give some examples of solutions for the case of the constant-kernel equation for 
specific initial conditions. We then use the rules given above to obtain continuous 
limits. We consider initial distributions of the form 

(44) ck = pk"' ' 9 
where p and y are independent of k and m = 1,2,. . . . The initial values satisfy the 
constraints 

k = !  h = l  

The constraints determine p and y as a function of the dispersity parameter p l  and 
the index m. In the limit p ,  = ( u ) / c ,  -+y, the above initial distributions become the 
so-called gamma distributions considered in [4]. 
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Substituting (44) into (12) and summing the series shows that p and q satisfy the 
polynomial equations 

m s l  
(45) 

p[dd/dq) l" - ' [q / ( l -  411 = 1 

p[q(d/dq)l"[ql( l -  411 = Fl. 

After calculating q, we can calculate p with either of the equations in (45). We will 
return to the solution of (45) after we construct the time-dependent solution of the 
constant-kernel Smoluchowski equation. 

For the case of constant kernel we have B = 0 in (15), and the generating function 
satisfies 

d G / d r  = G2. (46) 

The general solution is 

G ( s ,  7 )  = C ( S ) / [  1 - C ( S ) T ]  (47) 

where C(s) is the initial value of G(s ,  7). 

residue theorem gives 
If C(s) is analytic in a disc of radius r in the complex s-plane then the Cauchy 

{ c ( S ) / [ l  - C(S)T]}S-"-'] ds  

where s < r. For initial values of the form (44) we have 

C ( ~ ) = p ( ~ d / d s ) " - ' [ q ~ / ( l  - qs)]. (49) 
The integral in (48) is easy to evaluate for small values of m. We give the calculations 
f o r m = l . a n d m = 2 .  

k 6.1. m = l ,  ck=pq 

From the constraint equations (45) we obtain 

P = l/(Fl - 1) 

C(s) = pqs/(l - 4 s )  

q = 1 - l/F, 

where 1 s pI s 00. The initial value of the generating function is 

and the reduced distribution is given by 

where we have made the substitution z = qs in the contour integral. The poles of the 
integrand are at 

z = o  z,  = (1 +pr)- ' .  

Evaluating the integral with the residue theorem, we obtain 
k - k i l  

8 k  =Pq zl 

where p and q are given by (50). With (50) amd (51) we have 

nk=No(1 -T)*(l/p1)(1 -1/p1)~-'[1+7/(CL1-1)]~- ' .  
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According to the rule given above we have 

n( U )  = lim n k /  ul 
v,-O 

Using 

e x p ( a ) =  lim ( l + a / k ) k  
k - x  

and T = 1 - N /  No in the expressions for nk ,  we obtain the limit 

n ( u ,  T )  = ( N * /  V )  exp(-Nu/ v) .  (53) 
We recognise (53) as the Friedlander self-preserving distribution. 

The solution given by (52) is a one-parameter family of exact solutions. The 
solutions are labelled by the allowed values of pl, which are 1 F~ CO. For large 
differences in pl the solutions are quite different. For example, for pl near unity the 
initial distributions are narrow and are not at all like the initial, exponential self- 
preserving distribution (pl = CO). For the smallest allowed value pl = 1, ck is monodis- 
perse and ( 5 2 )  yields the Smoluchowski solution (34). Clearly this solution, at least 
in its early stage of temporal evolution, is quite different from the self-preserving 
distribution. 

6.2. m = 2 ,  Ck=pkqk 

Solving the constraint equations for m = 2 yields 

9 = ( C L 1  - l)/(Fl + I )  (54) 

C ( S )  =pqs / ( l  -qS)2 (55) 

P = 4 / [ ( ~ 1 -  1 ) ( F l +  1)l .  
The initial value of the generating function is 

and 

where we have made the substitution z = qs. The poles in the integrand are at z = 0 and 

(57) 
Z+ = 1 +tpT+ [(  1 +p7/2)2 - 
2- = 1 +4p.-[(l +pT/2)2- 111’2. 

Using the residue theorem we obtain 

n k  = NO( 1 - T)’g, 

n k  = No( 1 - 7l2pqk(z+ - Z-) - l (  l / z k  - l/Z!). 
Setting T = O  in (58) confirms that n k  has the correct initial values. Taking the limit 
pl = CO in (58), with pl/ k = U/( U) = constant yields 

n(u, T )  = ( 2 ~ 2 /  V )  exp(-2u/(u))(l- T)*T”* sinh(2v~”*/(u)) .  (59) 

c ( u )  = 4(u/(u)) exP(-2ul(u)) (60) 

The distribution (59) has the initial value 

which is the m = 2 gamma distribution. The distribution given by (59) has been shown 
by Drake [4] and Wayland [18] to be a solution of the continuous, constant-kernel 
Smoluchowski equation. 



3014 R P Treat 

Equation (58) gives an  exact solution for every allowed value of pl . Thus we have 
constructed another one-parameter family of solutions. Taking pI = 1 gives a monodis- 
perse initial distribution for the m = 2 distribution, which is what we found for the 
pl = 1 member of the m = 1 family of solutions. Thus, the two families have the p l  = 1 
member in common. However, for p l  ;% 1 the members of the two families are all 
different and, as we have seen, have different continuous limits. 

7. Comments 

We have constructed a general solution the discrete Smoluchowski equation for the 
linear kernel and shown its correspondence to the known continuous solution in the 
limit that the smallest particle size vanishes. Discrete and continuous general solutions 
for the branched polymer kernel 

Ka., = ( a  + P k ) ( a  + P.i) 
are also known [9, lo]. It is not shown here, but the correspondence hetween the 
discrete and continuous solutions for the branched polymer kernel is essentially the 
same as for the linear kernel. 

Simple explicit discrete or continuous solutions of the kind given for the linear 
and  the branched polymer kernels are not known and  may not exist for the general 
quadratic kernel 

KL,, = A + E (  k + j )  + Ckj 

or the special cases 

K k , ,  = A + Ckj K , , , = B ( k + j ) + C k j .  

However, a solution of the discrete equation for the general quadratic kernel which 
is a polynomial in the scaled time with recursively calculated coefficients has been 
given by Bak and  Lu [lo]. 

Since the Friedlander self-preserving solution does not exist for the linear kernel 
(or  the sum kernel), and  certain other kernels as well, different approaches are needed 
(see e.g. [ 191) to study the temporal asymptotic behaviour of distributions. Possibly 
the general solution given here could be used to investigate the asymptotic behaviour 
of solutions for the linear kernel. 
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Appendix. The existence of the second moment for the linear kernel 

White [20] has shown that the second and  higher moments for the sum kernel exist 
for 0 s T < 1 if the initial moments are finite. We calculate the second moment of the 
distribution for general initial distributions for the sum kernel and  then use it for a 
bound on the second moment of the distribution for the linear kernel. Let n f  denote 
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the solution and let M f  denote the second moment for the sum kernel. Taking the 
second moment of n f ,  given by ( 3 1 ) ,  rearranging, and extending the upper limit to 
CO, we obtain 

M*;= NJ1-7 )  c k2exp( -kT/p l )  
1 

A - I  

Summation over n yields 

x L $  [ e x p ( k C ( s ) s / p , ) - l ] s ~ " ' d s .  
2 n-i 

As we showed in subsection 4.5, if all the moments of the initial distribution are finite, 
the contour s = r, where 1 < r < T ', T < 1, will not contain singularities of C" and the 
geometric series in (A.2) is convergent. We then obtain 

MT = N , ( 1 - r ) ( p 1 / r ) p l ( d / d r ) ( 2 i 7 - i ) ~ '  

There are poles at the origin and s = 1. We have C ( 0 )  = 0 and C (  1) = 1. The contribu- 
tion to the integral from the origin vanishes. To determine the residue from the pole 
at s = 1 we note that the leading terms in the Taylor expansion of C(s) are 

C(s) = 1 + p,(s - 1) +$ p: - p , ) ( s  - 1)2+ 

e x p [ ( l - C ( s ) ) r / p . , ] =  1 - 7 ( ~ - 1 ) + ~ [ ~ ~ + ( p ~ - p , ) 7 / p , ] ( s - 1 ) * .  . . . 

and hence 

Computing the residues, we obtain 

M :  = Nop2/( 1 - T ) ~  T <  1. (A.4) 

Let M z  denote the second moment for the kernel A +  B ( k + j ) .  We find a bound 
for M z  as follows. From the definitions of the Pochhammer symbol and the dimension- 
less collision constants A* and B* we see that 

A*"(2+2Bk/A),  k". 

And, since r < 1 and p ,  2 1, we have 

(1 - A * T ) * ~  A s  exp( 1) exp(-T/p,) .  

With these inequalities, by inspection of the solution (21) for the linear kernel and the 
solution (30) for the sum kernel, we see b>, comparison that nk c e x p ( l ) n F ,  r <  1. 
Thus, the second moment of the solution for the linear kernel is finite for 7 <  1. 
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